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1. Introduction

In [1, 2], a classical solution of string theory is described that is dual in the sense of

AdS/CFT [3 – 5] to an external quark passing through a thermal plasma of N = 4 super-

Yang-Mills theory at large N and strong ’t Hooft coupling g2
YMN . The string is treated in

the test string approximation: its back-reaction on the geometry is not considered. The

string dangles into AdS5-Schwarzschild from an external quark on the boundary which is

constrained to move with constant velocity. The string trails out behind the quark and

exerts a drag force

dp

dt
= −

π
√
g2

YMN

2
T 2 v√

1− v2

(1.1)

on the quark. Here v is the speed of the quark, and T is the temperature of the plasma, or

equivalently the Hawking temperature of the horizon of AdS5-Schwarzschild. The diffusion

constant D = 2/(πT
√
g2

YMN) implied by (1.1) was derived independently in [6], also using

AdS/CFT.

In the gauge theory, energy loss results from gluons (or superpartners of gluons) radi-

ating off the heavy quark and interacting with the plasma. We should ask: How energetic

are these radiated gluons? At what angle do they come off relative to the velocity of the

heavy quark? To the extent that such questions can be posed in a gauge-invariant man-

ner, AdS/CFT should be able to provide an answer. The aim of the present paper is to

shed some light on these questions by computing the profile of 〈trF 2〉 in the boundary

gauge theory. To do this we compute the linear response of the dilaton field to the string,

which is a first step in computing its back-reaction on the AdS5-Schwarzschild background.

Actually, what we will extract in the end is the vacuum expectation value (VEV) of the

operator in N = 4 super-Yang-Mills which couples to the dilaton. This is not quite trF 2,

but rather the lagrangian density plus a total derivative: in mostly plus signature,

OF 2 =
1

2g2
YM

tr
(
−F 2

mn + 2XID2
mX

I − 2iλ̄aσ̄mDmλa + more interactions
)
, (1.2)
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where XI are the six adjoint scalars, λa are the four Weyl adjoint fermions, Dm is the

gauge-covariant derivative, and σ̄m = (−1,−~σ) where ~σ are the Pauli matrices.

The near field of the heavy quark is just the Coulomb color-electric flux, appropriately

Lorentz boosted. The contribution of this near field to 〈OF 2〉 can be computed analytically,

following [7], and it has nothing to do with energy loss. When it is subtracted away from

〈OF 2〉, the remainder is peaked at momenta many times larger than the temperature. The

information in 〈OF 2〉 is complementary to (1.1) in that it helps identify the energy scale

at which dissipative phenomena occur but does not so clearly indicate the overall rate of

dissipation. More complete information could be extracted from 〈Tµν〉, which could also

be computed via AdS/CFT but requires a more technically involved treatment of metric

perturbations.

Several related papers [8 – 11] appeared recently, all aiming to describe at some level

energy dissipation from a fundamental quark into a thermal plasma using AdS/CFT. The

interest in this topic owes to a possible connection with relativistic heavy ion physics. A

distinctive feature of RHIC experiments [12 – 15] is jet-quenching, which is understood as

strong energy loss as a high-energy parton passes through the quark-gluon plasma formed

in a gold-on-gold collision.

The organization of the rest of this paper is as follows. In section 2 we explain the

classical supergravity calculation that leads to 〈OF 2〉. Similar calculations were carried

out in [16] for a string undergoing small oscillations around certain static configurations

in AdS5. All the supergravity computations are done in five dimensions, but the final

answer is the gauge theory quantity 〈OF 2〉 as a function of the coordinates (t, x1, x2, x3)

of Minkowski space. (Actually we will find it easier to pass to momentum space early in

the computation.) One must solve a boundary value problem in order to extract 〈OF 2〉.
Numerical techniques for doing so and results for several different choices of v are described

in section 3. We conclude in section 4 with a discussion of the possible relevance of our

work to recent experimental results.

2. Dilaton perturbations

The background geometry is the well-known AdS5-Schwarzschild solution,

ds2 = Gµνdx
µdxν =

L2

z2
(−hdt2 + d~x2 + dz2/h) h = 1− z4

z4
H

, (2.1)

and useful relations include

L4

α′2
= g2

YMN T =
1

πzH
. (2.2)

In static gauge, the string worldsheet is described as

Xµ(t, z) ≡
(
t X1(t, z) 0 0 z

)

X1(t, z) = vt+ ξ(z) ξ(z) = −zHv
4i

(
log

1− iz/zH
1 + iz/zH

+ i log
1 + z/zH
1− z/zH

)
.

(2.3)
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To compute the dilaton response to this string, one starts with the following action:

S =

∫
d5x
√
−G

[
− 1

4κ2
5

(∂φ)2

]
− 1

2πα′

∫

M
d2σ eφ/2

√−g gαβ ≡ Gµν∂αXµ∂βX
ν . (2.4)

Here α and β refer to worldsheet coordinates σα = (τ, σ), and

κ2
5 =

4π2L3

N2
= 8πG5 (2.5)

where G5 is the five-dimensional gravitational constant. To derive the dilaton equation of

motion, it helps first to rewrite the whole action as a single volume integral (we refrain

briefly from choosing static gauge):

S =

∫
d5x
√
−G

[
− 1

4κ2
5

(∂φ)2 − 1

2πα′

∫
d2σ eφ/2

√−g√
−G

δ5(xµ −Xµ(σ))

]
. (2.6)

The five-dimensional delta function in (2.6) is a product of standard Dirac delta functions.

So, for instance,

δ5(xµ) = δ(t)δ(x1)δ(x2)δ(x3)δ(z) . (2.7)

The linearized equation of motion can now be straightforwardly derived as

¤φ =
1√
−G∂µ

√
−GGµν∂νφ = J ≡ κ2

5

2πα′

∫
d2σ

√−g√
−Gδ

5(xµ −Xµ(σ)) . (2.8)

and by passing to static gauge one may explicitly perform then the remaining integral in

(2.8):

J =
κ2

5

2πα′

√−g√
−Gδ(x

1 −X1(t, z))δ(x2)δ(x3) . (2.9)

In the spirit of finding the steady-state, late-time behavior, we assume that φ depends

on x1 and t only through the combination x1 − vt. After computing

√−g√
−G =

z3

L3

√
1− v2 , (2.10)

one can easily show that ¤φ = J simplifies to

[
z3∂z

h

z3
∂z +

(
1− v2

h

)
∂2

1 + ∂2
2 + ∂2

3

]
φ =

κ2
5

√
1− v2

2πα′
z

L
δ(x1 − vt− ξ(z))δ(x2)δ(x3) .

(2.11)

This partial differential equation can be attacked by Fourier transforming:

φ(t, ~x, z) =

∫
d3k

(2π)3
eik1(x1−vt)+ik2x2+ik3x3

φk(z) , (2.12)

and similarly for J . Then one has

[
z3∂z

h

z3
∂z −

(
1− v2

h

)
k2

1 − k2
⊥

]
φk =

κ2
5

√
1− v2

2πα′
z

L
e−ik1ξ(z) , (2.13)
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where k2
⊥ = k2

2 + k2
3 . All dimensionful factors drop out of the differential equation when

we introduce rescaled variables

K1 = zHk1 K⊥ = zHk⊥ y =
z

zH
φ̃K(y) =

2πα′L
κ2

5z
3
H

1√
1− v2

φk(z) . (2.14)

Then h = 1− y4 and

[
y3∂y

h

y3
∂y −

(
1− v2

h

)
K2

1 −K2
⊥

]
φ̃K = ye−iK1ξ/zH = y

(
1− iy
1 + iy

)vK1/4(1 + y

1− y

)ivK1/4

.

(2.15)

There doesn’t appear to be a solution to (2.15) in terms of known special functions. How-

ever it can be solved in two interesting limiting regimes:

• Near the horizon, y is slightly less than 1, a better choice of radial variable is

Y = log(1− y). The leading terms in the differential equation near the horizon (that

is, for large negative Y ) are

[
∂2
Y +

(
vK1

4

)2
]
φ̃K =

1

4
eY e−ivK1(Y+π/2−log 2)/4 , (2.16)

which is also the equation of motion for a simple harmonic oscillator with a complex

driving force. The solutions are

φ̃near,K =
eY /4

1− ivK1/2
e−ivK1(Y+π/2−log 2)/4 + C+

Ke
ivK1Y/4 + C−Ke

−ivK1Y/4 , (2.17)

where C±K are arbitrary constants. The standard boundary condition at a black hole

horizon is to choose a purely infalling solution. This means that in the near-horizon

limit, φ should depend on t and Y only through the combination t + zHY/4, not

t− zHY/4: the quantity zHY/4 is essentially the tortoise coordinate. Thus C+
K = 0.

• Near the boundary of AdS5-Schwarzschild, the leading terms in the differential

equation are

y3∂y
1

y3
∂yφ̃K = y , (2.18)

and the solutions are

φ̃far,K = −y
3

3
+AK +BKy

4 , (2.19)

where AK and BK are arbitrary constants. AK should be set to zero because there

is no deformation of the lagrangian. BK is proportional to 〈OF 2〉.

It is worth noting that the relation of BK to 〈OF 2〉 involves a subtraction of contact

terms. Conventionally, it is understood that

〈OF 2(t, ~x)〉 = − L3

2κ2
5

lim
z→0

1

z3
∂zφ(t, ~x, z) , (2.20)
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but in the present case, the limit doesn’t exist because of the y3 term in (2.19). Fortunately,

this term has no ~K dependence. Thus when passing back to real space, it is proportional to

a delta function supported at the location of the quark. This delta function has an infinite

coefficient, but if it is subtracted, the remaining contribution to 〈OF 2(t, ~x)〉 indeed comes

from BK , and it is finite. The subtraction prescription has some arbitrariness: one could

subtract off any finite multiple of the delta function at the same time, which corresponds

to subtracting a K-independent quantity from every BK .

Combining (2.2), (2.12), (2.14), (2.19), and (2.20), one finds

〈OF 2(t, ~x)〉 = −π3T 4
√
g2

YMN
√

1− v2

∫
d3K

(2π)3
e[iK1(x1−vt)+iK2x2+iK3x3]/zHBK . (2.21)

In section 3, we will quote results in units where zH = 1: this corresponds to T = 1/π.

For a wide range of K1 and K⊥, the dominant contribution to BK comes from the

near field of the quark, which in position space is proportional to 1/|~x|4 in the rest frame of

the quark. Consider first the case v = 0. Following [7], consider a string dangling straight

down in AdS5. One obtains

〈OF 2(t, ~x)〉 =
1

16π2

√
g2

YMN

|~x|4 . (2.22)

This calculation is done in the absence of a horizon, or equivalently at zero temperature.

Fourier transforming (2.22) leads to

Bnear field
K =

π

16
| ~K| = π

16

√
K2

1 +K2
⊥ . (2.23)

We have expressed the result in terms of the dimensionless variables (2.14) with zH = 1/πT

finite, even though T = 0 physically. This is a bookkeeping trick to obtain a form that can

easily be compared with AdS5-Schwarzschild results.

For v 6= 0, one may apply a Lorentz boost to the AdS5 string configuration considered

in the previous paragraph. This describes an external quark moving through the vacuum

at speed v. The result for Bnear field
K in this case is

Bnear field
K =

π

16

√
(1− v2)K2

1 +K2
⊥ . (2.24)

This is the analytic form that we will subtract from numerically evaluated BK to excise

the near field but leave behind all the dissipative dynamics.

3. Numerical algorithms and results

The boundary value problem described in and below (2.15) is reminiscent of both the glue-

ball calculations initiated in [17, 18] and of quasi-normal modes in AdS5-Schwarzschild [19].

But there is an additional simplifying feature: all the equations are affine in φ̃K—that is,

they are linear combinations of φ̃K(y), its derivatives, and functions of y that do not involve

φ̃K(y). To see this, consider the following formulation of the horizon boundary condition.

– 5 –
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One first expresses the asymptotic solutions φ̃near,K and φ̃far,K as a sum of the inhomoge-

nous solution and the permitted homogenous solution. Explicitly, for the near-horizon

solution,

φ̃near,K = φ̃near,P,K + C−Kφ̃near,H,K

φ̃near,P,K ≡
eY /4

1− ivK1/2
e−ivK1(Y+π/2−log 2)/4

φ̃near,H,K ≡ e−ivK1Y/4 .

(3.1)

The Wronskian

Wnear(y) = (φ̃K(y)− φ̃near,P,K(y))φ̃′near,H,K(y)− (φ̃′K(y)− φ̃′near,P,K(y))φ̃near,H,K(y) (3.2)

is a measure of how close the numerically computed function φ̃K(y) is to the analytic ap-

proximation φ̃near,K . Because the horizon is a singular point of the differential equation,

one must impose the boundary condition Wnear(y1) = 0 at a point y1 slightly less than 1,

which is to say slightly outside the horizon. The quantity Wnear(y1) is indeed a linear com-

bination of φ̃K(y), φ̃′K(y), and a φ̃K -independent function known in terms of φ̃near,H,K(y)

and φ̃near,P,K(y). One may similarly formulate a boundary condition Wfar(y0) = 0 which

is also affine in φ̃K . The point y0 should be chosen slightly greater than 0, which is to say

close to the boundary of AdS5-Schwarzschild.

There are special methods to solve boundary value problems of the type just described,

where both the differential equation and the boundary conditions are affine, which are more

efficient than standard shooting algorithms. Mathematica’s NDSolve incorporates such

methods internally [20]. But we have found that we achieve greater numerical accuracy

using a home-grown shooting method where BK is guessed and then adjusted to make C+
K =

0. Accuracy was further improved by finding power series corrections to the asymptotic

forms (2.17) and (2.19). A satisfactory choice of cutoff points was y0 = 0.01 and y1 = 0.99.

The numerical challenge increases as K1 and K⊥ increase, requiring more CPU time.

As we will see in figure 2, BK is significantly weighted toward K larger than 10 when

an appropriate phase space factor is included. So it would be worthwhile to have some

alternative method adapted to this regime, perhaps based on a WKB approximation.

We take advantage of the axial symmetry of the problem to express BK = B(K1,K⊥)

where K⊥ =
√
K2

2 +K2
3 . Because φ(t, ~x, z) and 〈OF 2(t, ~x)〉 are real, it must be that

B(−K1,K⊥) = B(K1,K⊥)∗. It is easy to see that this condition is enforced by the differ-

ential equation. Our results for B(K1,K⊥), with the near field (2.24) subtracted, are shown

in figures 1 and 2. A good match to the near field form (2.24) was obtained: for K⊥ > 10

the deviations are at the level of tenths of a percent. These deviations are interesting and

can be seen in magnified form in panes b, d, f, and h of figure 2. Much of our discussion

in section 4 will hinge on these high-momentum tails.

4. Discussion

Before attempting a comparison of our results with recent RHIC results, we will give a brief

summary of how the measurements of interest are done. The reader is warned that we are

– 6 –
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Figure 1: Contour plots of the real part and minus the imaginary part of B(K1,K⊥) for several

values of v. The near field contribution (2.24) has been subtracted. B(K1,K⊥) is proportional to

the K-th Fourier mode of 〈OF 2〉: see (2.21). In each plot, the white region is closest to zero, and

the black region is the most positive.

non-experts and is referred to the experimental literature — for example [21 – 23]—for an

authorative account.

Consider the following scenario:
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Figure 2: The absolute value of B(K1,K⊥) with and without the phase space factor K⊥. The

near field contribution (2.24) has been subtracted. The green dot is the recoil energy of a thermal

gluon: see (4.2). The dashed red lines indicate the direction in which K⊥|B(K1,K⊥)| is largest: see

the discussion around (4.3). In each plot, the white region is closest to zero, and the black region

is the most positive.

1. Two highly energetic partons collide near the surface of the hot dense matter pro-

duced in a relativistic heavy ion collision. After the collision, the partons have large

– 8 –
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transverse momentum.

2. One parton escapes without interacting significantly with the quark-gluon plasma

(QGP) and fragments in vacuum into what is termed the near side jet.

3. The other parton travels through the QGP. Its evolution into observed particles is

strongly affected by its interaction with the QGP. If it weren’t for these interactions,

this parton would simply fragment into an away side jet, approximately back-to-back

with the near side jet.

Because of difficulties in unambiguously identifying jets, a standard strategy is to look for

angular correlations between two energetic charged particles: the trigger particle, which is

presumed to be part of the near-side jet, and the partner particle, which is the putative

probe of jet-quenching. Histograms of the azimuthal angle ∆φ between these two particles

invariably show a peak at small angles, which means that the partner particle is often

part of the near-side jet. A peak at ∆φ = π is evidence for an away side jet. In central

collisions, the peak at ∆φ = π disappears [21] or even splits [22, 23]. In [23], the trigger

particle is required to have 2.5 GeV/c < pT < 4.0 GeV/c while the partner particles has

1.0 GeV/c < pT < 2.5 GeV/c, and for central collisions a broad peak is observed roughly

between ∆φ = 1.6 and ∆φ = 2.6. (All angles will be quoted in radians.) There is actually

a minimum at ∆φ = π.

The recent theoretical literature on jet-quenching, with which we have less familiarity

than we would like, offers several possibilities. Among them are scenarios [24, 25] where the

QGP affects fragmentation by recombination of thermal quarks with the parton shower;

extensions of traditional QCD methods such as the twist expansion [26]; predictions of a

coherent high momentum ridge of color flux emanating from the quark [27, 28]; and related

discussions of a QCD “sonic boom” giving rise to conical collective flow [29, 30].

In the backdrop of these experimental and theoretical investigations, it is interesting to

say what we can about the energy flow and spectrum of particles radiated from the heavy

quark described in the previous sections. The hazards of comparing strongly coupledN = 4

super-Yang-Mills with real-world QCD are well known: for a brief summary, see [2]. To

these difficulties we must add that we have treated the quark as infinitely massive, whereas

the experimental results we have referred to do not include heavy-quark tagging. Also, it

would be better to know 〈Tµν〉 in addition to 〈OF 2〉: energy flow is most crisply captured

in the Poynting vector Si = T0i. Finally, it would be desirable to go to larger K1 and

K⊥, which requires either CPU-intensive numerics or an improved calculational method,

as discussed near the end of section 3.

Objects deep inside AdS5 are understood to correspond to soft field configurations in

the dual CFT, while objects near the boundary correspond to more localized configurations.

So a reasonable expectation based on [1, 2] is that the profile of 〈OF 2〉 would have the form

of a wake, consistent with the ideas of [27 – 30]. The Fourier space profiles shown in figures 1

and 2 suggest a slightly different, possibly complementary picture. It helps our intuition

to use explicit numbers. Let’s set

T =
1

π
GeV = 318 MeV . (4.1)

– 9 –
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This is in the upper range of temperatures for the QGP, and it is a convenient choice

for us because the K1 and K⊥ axes in figure 1 and 2 can then be read in units of GeV/c.

Another interesting number is the typical final energy of a free massless particle that collides

elastically with the heavy quark. To compute this we take the initial momentum of the

massless particle to be of magnitude T and directed perpendicular to the heavy quark’s

velocity. If the perpendicular component of the massless particle’s momentum doesn’t

change during the collision, then its final energy is

Ef =
1 + v2

1− v2
T = 6.2 GeV for v = 0.95. (4.2)

We have indicated Ef for the various velocities with the green dots in panes a, c, e, and g

of figure 2. If the gauge theory were almost free instead of strongly coupled, we would

expect the energy loss to be dominated by collisions of the type that led to (4.2).

For v = 0.95, |B(K1,K⊥)| is peaked in a range of momenta between 2 and 7 GeV/c

(the black region in figure 2). Because OF 2 ∼ trF 2 starts with bilinears in the fundamental

fields, this would correspond to radiated particles with momenta between 1 and 3.5 GeV/c:

less than the Ef of (4.2) by a factor of a few. For v = 0.99, half the momentum at which

|B(K1,K⊥)| is peaked is less than Ef by a similar factor. These considerations encourage

the view that dissipative events involve several quanta interacting with each other as they

recoil from the heavy quark. This is broadly consistent with the picture of a coherent

co-moving high momentum ridge dissipating energy from the heavy quark. But as we will

see below, the peak regions of |B(K1,K⊥)| may not dominate the dissipative physics.

Panes b, d, f, and h of figure 2 show that if one multiplies |B(K1,K⊥)| by the factor K⊥
that would arise in an integration over momentum space, the result is directionally peaked.

This again brings to mind the picture of dissipation through radiation carried mostly in

the high momentum ridge. The opening angle θ between the heavy quark’s velocity and

the directional peak of K⊥|B(K1,K⊥)| depends strongly on the speed:

v 0.75 0.90 0.95 0.99

θ 0.58 0.41 0.30 0.17
(4.3)

The values of θ in (4.3) were determined by setting the K⊥ derivative of K⊥|B(K1,K⊥)|
to zero at fixed and large K1, then taking the appropriate arctangent function to find θ.

The phase space factor K⊥ makes an enormous difference to the dominant momen-

tum scale. In K⊥|B(K1,K⊥)|, momenta many times Ef dominate. Indeed, along the

preferred direction, K⊥|B(K1,K⊥)| seems to level off at a finite value as K increases. Evi-

dently we have not explored sufficiently high momenta to discern whether the region where

K⊥|B(K1,K⊥)| is above a finite threshhold has finite volume.1

To recap: the plots of K⊥|B(K1,K⊥)| not only indicate directionality, but also suggest

that highly energetic fields are an important part of the description of the radiation process.

1Note that in the large momentum region of the plots shown, we are subtracting a quantity, Bnear field
K ,

which scales linearly with momenta. The remainder, B(K1, K⊥), scales roughly as 1/K in the region in

question. This evidently requires substantial numerical precision. All internal checks of our numerical

results suggest they are robust, but the importance of large K tails to our discussion is the reason we say

it would be value to have WKB methods in hand.
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To appreciate just how energetic, note that a charm quark moving in vacuum with v = 0.95

has energy 4.5 GeV, while a b quark with this speed has energy 15 GeV. If K⊥|B(K1,K⊥)|
can be used as an approximate guide to the spectrum of radiated particles, the single

particle energy could easily be in the 10 GeV ballpark. Recoil would obviously become an

important consideration if a real-world c or b quark emitted a particle even approaching

this range. This would substantially increase the opening angle θ. And it would encourage

the idea that the QGP enhances fragmentation processes at energies close to the kinematic

limit.

There are two main reasons to treat with particular caution a “prediction” from

AdS/CFT that heavy quarks should undergo fragmentation near the kinematic limit:

1. We have not made a quantitatively precise connection between 〈OF 2〉 in Fourier space

and the spectrum of radiated particles. Indeed, the peak region of B(K1,K⊥) and

its high-momentum tails send conflicting messages about the spectrum. We believe

the tails are important, but it may be that they have to do mostly with fields near

the quark rather than radiative dynamics. The question of the spectrum of radiated

particles should be revisited purely within the context of AdS/CFT with the VEV

of the stress-energy tensor in hand, and preferably with semi-analytic methods to

buttress numerical analysis of the high-momentum tails.2

2. Relating hard processes in strongly coupled N = 4 super-Yang-Mills and QCD is

especially perilous. Elementary scattering processes with large momentum transfer

can be treated perturbatively in QCD. In strongly coupled N = 4 super-Yang-Mills

the general expectation is that they cannot. But one should bear in mind that

many amplitudes of N = 4 are protected against all loop corrections. It would be

interesting to inquire whether amplitudes for gluons scattering off an external quark

have non-renormalization properties. This discussion recalls the basic conundrum of

the connection between AdS/CFT and RHIC: are near-extremal D3-branes merely

an analogous system to the QGP, or can they capture the dynamics of real-world

QCD above the confinement transition sufficiently precisely to be a useful guide to

RHIC physics?

Fragmentation near the kinematic limit seems to us consistent with the broad peak in

∆φ observed in [23]. But the energy ranges for the hadrons in [23] are substantially lower,

relative to the temperature, than the energies we have discussed in relation to AdS/CFT.

Recall that the upper limit on pT of the partner particle is 2.5 GeV/c. If the typical energy

of the partner particles is sufficiently low, it would be a blow to the picture of enhanced

high-energy fragmentation. Of course, without tagging most of the partons studied in [23]

may be presumed to be light quarks or gluons.

In summary, the calculations we perform are based on the trailing string picture of [1,

2], which naively supports the notion of a coherent wake of color fields with the heavy

quark at its tip. We do find evidence for a directional “prow,” which becomes more and

2Indeed, a computation of the stress tensor gives clear-cut evidence at smaller wave-numbers for a wake

in sense usually meant by phenomenologists [31].
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more forward as the speed increases. It seems that a full description of this prow involves

high-momentum gauge fields. This may be a hint that, with a realistic cutoff on the quark

mass imposed by hand, the quark could be deflected significantly by a single radiative

event.

The drag force (1.1) computed in [1, 2] is a time-averaged quantity which provides no

direct information about the energy scale of radiated particles. Calculating color-singlet

VEV’s in the boundary theory gives considerably more detailed information. Despite the

hurdles string theory faces in connecting to relativistic heavy ion collisions, we hope that

the trailing string picture can be further exploited to understand energy loss in the QGP.
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